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Abstract. Based on a generalized gauge theory on M4 × Z2 × Z3, we reconstruct the realistic SU(5) grand
unified model by a suitable assignment of fermion fields. The action of group elements Z2 on fermion fields
is the charge conjugation, and the action of Z3 elements represent generation translation. We find that a
linear term of curvature has to be introduced to accommodate the spontaneous symmetry breaking and
gauge hierarchy of the SU(5) model. A new mass relation is obtained in our reconstructed model.

1 Introduction

In recent years, it is believed that non-commutative ge-
ometry extends the basic geometry framework of physics
[1,2]. The most remarkable results are that in the stan-
dard model the Higgs fields may be considered as a kind
of gauge field on the same footing as Yang-Mills fields,
and the Yukawa couplings can be introduced as a kind of
gauge coupling. These topics have been studied by many
authors [3]–[10]. It is also interesting to ask whether the
same description stands when we go from the standard
model to the grand unification theories (e.g. SU(5) GUT
[12]), in which Higgs fields are introduced as input data
in the model building. By enlarging the discrete points
model first proposed by A. Connes [1,3], A. Chamsedine
et al. [5] provided a generalized formula, which gave a clue
for how to study more extensive models beyond the stan-
dard model, such as the SU(5) and SO(10) grand unified
models. However, lots of details need to be further studied.

In our previous work [7,8], we constructed a general-
ized gauge theory of the discrete group Z2. In this ap-
proach, we enlarged space–time to five dimensions with
the 5th “coordinate” consisting of only two points of Z2,
assigned left- and right-handed Fermion fields according
to the discrete group “coordinate”, and wrote down a La-
grangian for the fermion fields, which is not only the func-
tion of the space–time coordinates but also of the discrete
group “coordinate”. The most important point of this ap-
proach was that the derivatives on discrete group were in-
cluded in the Lagrangian. As for the case of the ordinary
Yang–Mills gauge theory, when we require the Lagrangian
be invariant under the action of the gauge group that is
a function of space–time and of the discrete group, the
Higgs fields appear in the covariant derivative and Yukawa
coupling is naturally introduced by the gauge coupling.
Furthermore, we constructed the Weinberg–Salam model

and the electroweak–strong interaction model and tried to
endow the discrete group with some physical meaning.

In this paper, we first develop our previous approach
to the case of M4 × Z2 × Z3 and reconstruct the realistic
SU(5) grand unified model of three-generation fermions
with the generalized gauge theory on M4 × Z2 × Z3. A
similar generalized gauge theory on M4 × Z2 × Z3 has
also been discussed in a CP-violation toy model [11]. We
distinguish the left- and right-hand parts of fermions by
two elements of the discrete group Z2, differentiate three
families by three elements of the discrete group Z3, and
connect fermions by charge conjugation transformation
on discrete points of Z2 and by generation translation on
discrete points of Z3. Since there are two mass scales in
the SU(5) model characterizing the spontaneous symme-
try breaking of SU(5) to SU(3)× SU(2)× U(1) and then
to SU(3)×U(1), if we want to get this gauge hierarchy, we
need to add the linear term of curvature F , first proposed
by Sitarz [6].

The plan of this paper is as follows. In Sect. 2, we
review gauge theory on M4 × Z2 × Z3. In Sect. 3, we
build the SU(5) model using a generalized gauge theory
on M4 × Z2 × Z3. In Sect. 4, we discuss the symmetry
breaking phenomenon.

2 Notation of gauge theory
on M4 × Z2 × Z3

In this section we give a basic review of gauge theory on
M4×Z2×Z3. A more detailed account of this construction
may be found in [6,7].

Let xµ denote the coordinate on M4 and g label the
points of the discrete group Z2 × Z3. The differentiation
of an arbitrary function on product space M4 × Z2 × Z3
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has the following form

df = ∂µfdxµ + ∂gfχ
g, g ∈ Z2 × Z3, (2.1)

where dxµ and χg are basis of one forms on M4 and Z2×
Z3, respectively. The partial derivative ∂g is defined as

∂gf(x, h) = (f(x, h)−Rgf(x, h))
= (f(x, h)− f(x, h · g)). (2.2)

From this definition we may obtain a lot of relations: some
for the product of one-forms,

dxµ⊗̂dxν = −dxν⊗̂dxµ

dxµ⊗̂χg = −χg⊗̂dxµ, (2.3)

some for the multiplication of one-forms by functions,

f(x, h)dxµ = dxµf(x, h),
χgf(x, h) = Rgf(x, h)χg,

(2.4)

and some for the action of derivative operators on one-
forms

ddxµ = 0, dχg = −Cg
p,hχ

p⊗̂χh,

where the structure constants are given by Cg
p,h = δg

p+δg
h−

δg
ph(δe

ph−1). The general gauge potentialA onM4×Z2×Z3

may be written as

A = Aµdxµ +
∑

g ∈ Z2 × Z3
g 6= e

φgχ
g . (2.5)

The unitarity of the gauge group enforces that A∗ = −A.
Thus, since (dxµ)∗ = dxµ and (χg)∗ = −χg−1

, we obtain

(Aµ)† = −Aµ, φ
†
g = Rgφg−1 .

The curvature two-form F = dA+A⊗̂A splits into

F =
1
2
Fµνdxµ⊗̂dxν + Fµgdxµ⊗̂χg + Fghχ

g⊗̂χh, (2.6)

where

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] ,
Fµg = ∂µΦg +AµΦg − ΦgRg(Aµ) ,

Fgh = ∂gφh + φgRgφh − Ck
ghφk (2.7)

with Φg = 1− φg.
To construct the Yang–Mills action, we need to define

the metric1

〈dxµ,dxν〉 = gµν , 〈χg, χh〉 = ηgh,

〈dxµ ∧ dxν ,dxσ ∧ dxρ〉 = 1
2 (gµσgνρ − gµρgνσ),

〈dxµ ⊗ χg,dxν ⊗ χh〉 = gµνηgh,

〈χg ⊗ χh, χg′ ⊗ χh′〉 = ηgg′
ηhh′

.

(2.8)

1 For the sake of simplicity, we have set the mass dimension
equal to 1 in the mathematical formulas

where ηgh = ηgδ
gh−1

. After such a form of the metric is
taken, the Yang–Mills Lagrangian becomes

LN = − 1
N

∫
G

〈F, F 〉 (2.9)

=
1
N

∫
G

(
−1

4
FµνF

†µν + ηgFµgF
†µ
g − ηgηhFghF

†
gh

)

It is possible to add an extra gauge-invariant term to
the Yang–Mills action [6], which is linear in the curvature
〈F 〉,

LL = − 1
N

∫
G

〈F 〉

= − 1
N

∫
G

Fghη
gh = − 1

N

∫
G

ηgFgg−1 . (2.10)

Let us add this term to the Yang–Mills action with an ar-
bitrary scaling parameter α. We obtain the bosonic sector
Lagrangian

L = LN + αLL. (2.11)

In next section, we find that this Lagrangian is needed in
the construction of the SU(5) model.

3 Generalized SU(5) gauge theory
on M4 × Z2 × Z3

In this section, we construct the SU(5) gauge theory on
M4 × Z2 × Z3 by using generalized gauge theory on the
discrete group [7,8]. To this end, we first set fermion fields
on the discrete group, then write down gauge fields in
terms of the gauge potential. Finally, the Lagrangian of
the gauge fields is written down via the noncommutative
differential geometry approach.

3.1 Fields on M4 × Z2 × Z3

From the basic knowledge of SU(5) model [14], we know
that one family of left-handed (or right-handed) fermions
can be accommodated in an SU(5) reducible representa-
tion of 5∗+10 (or 5+10∗). According to the representation
of SU(5), we write down the first family fermions as
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5∗ : ψL =



dC
1
dC
2
dC
3
e−
−νe




L

, 5 : ψC
R =



d1
d2
d3
e+

−νC
e




R

10 : χL = 1√
2




0 uC
3 −uC

2 u1 d1
−uC

3 0 uC
1 u2 d2

uC
2 −uC

1 0 u3 d3
−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0




L

,

10∗ : χC
R = 1√

2




0 u3 −u2 uC
1 dC

1
−u3 0 u1 uC

2 dC
2

u2 −u1 0 uC
3 dC

3
−uC

1 −uC
2 −uC

3 0 e−

−dC
1 −dC

2 −dC
3 −e− 0




R

.

(3.1)

The other two families can be written similarly by re-
placing u, d, e, νe by c, s, µ, νµ and t, b, τ, ντ . From observa-
tion of three-family fermions and their left- and right-hand
parts, 5∗ + 10 and 5 + 10∗, we find it is possible to assign
them with respect to elements of discrete group Z2 × Z3,
which is the product of discrete groups Z2 and Z3. The dis-
crete group Z2 has two elements Z2 = {e, Z|Z2 = e}; dis-
crete group Z3 has three elements Z3 = {e, r, r2|r3 = e}.
So the direct product group Z2 × Z3 has six elements:

Z2 × Z3 = {e, r, r2Z,Zr, Zr2|Z2 = e, r3 = e, Zr = rZ}.
In this paper, we use two elements of Z2 to distinguish left-
right hand fermions and use three elements of Z3 to dis-
tinguish three families. So the manifold considered should
be M4 × Z2 × Z3.

According to discrete group Z2×Z3, we arrange fermions
as follows:

ψ(x, e)=
[
ψC

χC

]1

R
, ψ(x, r)=

[
ψC

χC

]2

R
,

ψ(x, r2)=
[
ψC

χC

]3

R
,

ψ(x, Z)=
[
ψ
χ

]1

L
, ψ(x, rZ)=

[
ψ
χ

]2

L
,

ψ(x, r2Z)=
[
ψ
χ

]3

L,

(3.2)

where []i represents the ith generation of fermions. It is
important to note that the actions Rg, g ∈ Z2 × Z3 on
fermions have definite physical meanings. We find that
the action RZ is nothing but the charge conjugation trans-
formation, which changes left- and right-handed fermions
between 5∗ +10 and 5+10∗ and the action Rri , i = 1, 2, 3
is the translation among different generations,

Rriψj = ψ[(i+j)|Mod 3], i = 1, 2; j = 1, 2, 3

As we did in [7,8], we build gauge theory on space
M4×Z2×Z3 by introducing the free fermion Lagrangian
first,

L(x, g) = ψ(g)
[
iγµ(−→∂ µ −←−∂ µ)

−U(∂Z + ∂Zr + ∂Zr2)− U1(∂r + ∂r2)
]
ψ(g),

g ∈ Z2 × Z3 (3.3)

where U , U1 are parameters with mass dimension. Because
the parameters in front of the partial derivatives of the
discrete group are directly related to the mass of Higgs
particles in the reconstructed model and there are only two
mass scales of Higgs fields in the minimum SU(5) model,
we just choose two free parameters in front of the partial
derivatives of the discrete group here. In fact, U and U1 are
parameters related to the distance among discrete points
in the non-commutative geometry approach.

As with the introduction of Yang–Mills fields, it is rea-
sonable to require that the Lagrangian (3.3) be invariant
under gauge transformations H(x, g), g ∈ Z2 × Z3, where
H are functions depending not only on M4 but also on the
discrete group. So one should introduce a covariant deriva-
tive in the Lagrangian given in (3.3). The gauge-invariant
Lagrangian under SU(5) group should be written as

LF(x, g) = ψ(g)
[
iγµ(−→Dµ −←−Dµ)

−U(DZ +DZr +DZr2)− U1(Dr +Dr2)
]
ψ(g),

g ∈ Z2 × Z3, (3.4)

where Dµ = ∂µ + igAµ, Dg = ∂g + φgRg and

A(e) =
[

(Ak,l) (
A∗

mn,pq

) ]
,

A(Z) =

[ (
A∗

k,l

)
(Amn,pq)

]
;

(3.5)

(Ak,l) is a 5 × 5 matrix valued on 24 generators of the
SU(5) group and the corresponding matrix elements are
Ak,l; (Amn,pq) is a 25 × 25 matrix with mn, pq denoting
the row and column indices of the matrix, and the matrix
elements are

Amn,pq = Am,pδn,q +An,qδm,p .

Because the gauge transformations are independent of
generations, we should set the Yang–Mills potentials to
be the same in different generations. This means A(e) =
A(r) = A(r2) and A(Z) = A(rZ) = A(r2Z).

In the minimal SU(5) model, there are two Higgs mul-
tiplets, which belong to the adjoint and the vector rep-
resentations, respectively. Only the vector Higgs field ap-
pears in Yukawa coupling. In Yukawa terms of the La-
grangian (3.4), it is easy to find that φZ , φrZ , φr2Z con-
nect left- and right-handed fermions and φr,φr2 connect
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fermions with the same chirality. So only φZ , φrZ , φr2Z

fields appear in Yukawa terms; φr,φr2 fields do not. To get
the minimal SU(5) model, we arrange vector representa-
tion in φZ , φrZ , φr2Z and adjoint representation in φr,
φr2 . Thus we write down the fields φZ , φrZ , φr2Z as

g = e

φZ(g) =
[

0 f11
(
H∗

i,mn

)
f11

(
H∗

pq,j

)
e11 (Hpq,mn)

]
;

g = r[
0 f22

(
H∗

i,mn

)
f22

(
H∗

pq,j

)
e22 (Hpq,mn)

]
;

g = r2[
0 f33

(
H∗

i,mn

)
f33

(
H∗

pq,j

)
e33 (Hpq,mn)

]

g = e

φrZ(g) =
[

0 f21
(
H∗

i,mn

)
f12

(
H∗

pq,j

)
e12 (Hpq,mn)

]
;

g = r[
0 f32

(
H∗

i,mn

)
f23

(
H∗

pq,j

)
e23 (Hpq,mn)

]
;

g = r2[
0 f13

(
H∗

i,mn

)
f31

(
H∗

pq,j

)
e31 (Hpq,mn)

]

g = e

φr2Z(g) =
[

0 f31
(
H∗

i,mn

)
f13

(
H∗

pq,j

)
e13 (Hpq,mn)

]
;

g = r[
0 f12

(
H∗

i,mn

)
f21

(
H∗

pq,j

)
e21 (Hpq,mn)

]
;

g = r2[
0 f23

(
H∗

i,mn

)
f32

(
H∗

pq,j

)
e32 (Hpq,mn)

]

where (Hi,mn) is a 5×25 matrix,
(
H∗

pq,j

)
is a 25×5 matrix,

Hpq,mn is a 25× 25 matrix, and their elements are

Hi,mn = Hmδi,n −Hnδi,m,

Hpq,j = Hpδq,j −Hqδp,j ,

Hpq,mn = εpqmnkHk ,

We give these fields on discrete points Z, rZ, r2Z by the
Hermitian condition φ†

g = Rgφg−1 , which is φ†
Z = RZφZ ,

φ†
rZ = RrZφr2Z , φ

†
r2Z = Rr2ZφrZ .

The other two fields φr, φr2 are set as

g = e

φr(g) = I


 t1

(∑
i,j

)
s1

(∑∗
pq,mn

)

 ;

g = r

I


 t2

(∑
i,j

)
s2

(∑∗
pq,mn

)

 ;

g = r2

I


 t3

(∑
i,j

)
s3

(∑∗
pq,mn

)



g = Z

φr(g) = I


 t1

(∑∗
i,j

)
s1

(∑
pq,mn

)

 ;

g = rZ

I


 t2

(∑∗
i,j

)
s2

(∑
pq,mn

)

 ;

g = r2Z

I


 t3

(∑∗
i,j

)
s3

(∑
pq,mn

)

,

where I =
√−1 and ti, si are real parameters, Σpq,mn =

Σp,qδq,n + Σq,nδp,m, and (Σi,j) is a 5 × 5 traceless Her-
mitian matrix, i.e (Σi,j) = (Σi,j)

† and Tr
∑

=0. The Her-
mitian condition φ†

r2 = Rr2φr gives the values of φr2 on
discrete points as

g = e

φr2(g) = −I

 t3

(∑
i,j

)
s3

(∑∗
pq,mn

)

 ;

g = r

−I

 t1

(∑
i,j

)
s1

(∑∗
pq,mn

)

 ;

g = r2

−I

 t2

(∑
i,j

)
s2

(∑∗
pq,mn

)
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g = Z

φr2(g) = − I

 t3

(∑∗
i,j

)
s3

(∑
pq,mn

)

 ;

g = rZ

− I

 t1

(∑∗
i,j

)
s1

(∑
pq,mn

)

 ;

g = r2Z

− I

 t2

(∑∗
i,j

)
s2

(∑
pq,mn

)

 .

Actually, in the assignments of those fields φr, φr2 we
impose a symmetry RZφ = −φ∗. It is interesting to find
that this constraint corresponds to the discrete symmetry
introduced in the standard SU(5) grand unification model.
In the SU(5) model, the Higgs potential is required to
be invariant under a discrete transformation H → −H,∑ → −∑

, which can remove undesirable terms in the
potential.

3.2 Lagrangian of the model

After taking the assignments of Yang–Mills fields and Higgs
fields, we are now ready to write down the Lagrangian of
the fermionic sector from (3.4),

LF =
∑
A,k

ψk,Aiγ
µDµψk,A +

∑
A,k,l

χkl,Aiγ
µDµχkl,A

+2
∑

A,B,k,l

M1A,BχC
kl,Aψk,BH

†
l + h.c.

+
∑
A,B

∑
pqklm

M2A,BχC
pq,Aχkl,BεpqklmHm + h.c.

(3.6)

where A,B are generation indices, the other indices refer
to the SU(5) group and M1A,B M2A,B are elements of
matrices

M1 =


 f11 f12 f13
f21 f22 f23
f31 f32 f33


 , M2 =


 e11 e12 e13
e21 e22 e23
e31 e32 e33


 .

It is easy to show that

χC
ij,Aχkl,BεijklmHm = χC

kl,Bχij,AεijklmHm, (3.7)

so we may set M2 to be symmetric matrix, i.e eAB = eBA,
or

M2 =


 e11 e12 e13
e12 e22 e23
e13 e23 e33


 .

The Lagrangian of the bosonic sector may be derived
from the generalized differential calculation on M4×Z2×

Z3. From the assignment of fields on discrete groups and
basic knowledge of non-commutative geometry, we can
write down the Lagrangian of gauge fields. For the sake
of simplicity, we set ηZ = ηrZ = G and ηr = G1. After a
quite tedious calculation, we obtain the result as follows:

LG = − 1
N 〈F, F 〉

= − g2

4N 66FµνF
µν + 16β

N
G
U2DµH

†DµH

+ 4α
N

G1
U2

1
Tr(DµΣ

†DµΣ)

−[V (H,Σ) + V (Σ) + V (H)] ,

(3.8)

where

α = t21 + t22 + t23 + 10(s21 + s22 + s23),

β = Tr(2M1M
†
1 + 3M2M

†
2 ),

and

DµH = (∂µ + igAµ)H
Dµ

∑
= ∂µ

∑
+ig(Aµ

∑−∑
Aµ),

which show that Higgs fields H and
∑

are vector and
adjoint representations of the SU(5) group, respectively.
Here we write gauge bosons, Higgs fields

∑
, and H in

their matrix forms [14] as

A=
1√
2




X1 Y1

[G −2B/
√

30]αβ X2 Y2

X3 Y3

X†
1 X†

2 X†
3 W 3/

√
2 + 3B/

√
30 W †

Y †
1 Y †

2 Y †
3 W− −W 3/

√
2 + 3B/

√
30




(1)

(3.9)

∑
=




ΣX1 ΣY 1

[Σ8]αβ − 2Σ0/
√

30 ΣX2 ΣY 2

ΣX3 ΣY 3

Σ†
X1 Σ†

X2 Σ†
X3 [Σ3]rs +3Σ0/

√
30

Σ†
X1 Σ†

X2 Σ†
X3




(3.10)

H =



Ht1
Ht2
Ht3
Hd1

Hd2


 . (3.11)

Before giving the expression of the potential, we normalize
the coefficient of dynamical terms in the above Lagrangian
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by taking the values of the normalization constant N and
metrics G,G1 as

N = 66g2 = 16β
G

U2 = 4α
G1

U2
1
,

G =
33
8

1
β
g2U2 ,

G1 =
33
2

1
α
g2U2

1 .

Then the Lagrangian of the gauge fields becomes

LG = − 1
4FµνF

µν +DµH
†DµH

+Tr(DµΣ
†DµΣ)

−[V (H,Σ) + V (Σ) + V (H)],

(3.12)

and the potential is given as

V (Σ) = −m2
1TrΣ2 + λ1(TrΣ2)2 + λ2TrΣ4 ,

V (H) = −m2
2H

†H + λ3(H†H)2

V (H,Σ) = λ4(TrΣ2)H†H + λ5H
†Σ2H ,

where

m2
1 = g2U2

1 (
33
2α
− 99

32
α

β2

U4

U4
1

) ,

m2
2 = g2U2(

33
4β
− 66

1
α

U2
1

U2 ) , (3.13)

λ1 =
99
2
g2Tr(SS†) ,

λ2 =
33
4
g2Tr(TT † + 10TrSS†) ,

λ3 =
33
4
g2

β2 Tr{[Diag(M1M
†
1 )]2 + [Diag(M†

1M1)]2

+2[Diag(M2M
†
2 )]2 + 2[Diag(M†

2M2)]2} ,
λ4 =

33
8
g2

β
Tr[Diag(M†

1M)T + Diag(M1M
†
1 )S

+4Diag(M2M
†
2 )S] ,

λ5 =
33
8
g2

β
Tr[Diag(M1M

†
1 )S − 2Diag(M2M

†
2 )S

−Diag(M†
1M)T ] .

In the above expressions, we have used the following no-
tation:

T =
1
α


 t21 + t23

t21 + t22
t22 + t23




S =
1
α


 s21 + s23

s21 + s22
s22 + s23


 .

It is easy to show that

Tr(T + 10S) = 2;

For a 3× 3 matrix M , we define Diag(M) as the diagonal
part of M

Diag(M) =


 M11

M22
M33


 .

To express the above formulas in a simple form, we
redefine parameters by absorbing some constants in free
parameter U and U1:

µ =
33g2U

β
, µ1 =

33g2U1

α
,

and

ŝ1 = s2
1+s2

3
α , t̂1 = t21+t23

α ,

ŝ2 = s2
1+s2

2
α , t̂2 = t21+t22

α

ŝ3 = s2
2+s2

3
α , t̂3 = t22+t23

α

, (3.14)

where ŝi, t̂i (i = 1, 2, 3), are positive real numbers. Then
we can write T , S, m2

1 and m2
2 in a simple form:

T =


 t̂1

t̂2
t̂3


 , S =


 ŝ1

ŝ2
ŝ3


 ,

m2
1 = µ2

1(
1
2
− 3

32
µ4

µ4
1
), m2

2 = µ2(
1
4
− 2

µ2
1

µ2 ).

In the previous calculation, we only take into account
the term 〈F, F 〉. It can be shown that in this case the
Higgs potential cannot give correct symmetry breaking
mechanism of the SU(5) group. Fortunately, if the term
〈F 〉 is introduced in the Lagrangian, we can get correct
results. It is easy to show that,

〈F 〉 =
16
U2GβH

†H + 4α
G1

U2
1

Tr(Σ2).

Hence we should introduce the Lagrangian

L = − 1
N

(〈F, F 〉+ q′〈F 〉).

Using previous formulas, one finds that

− q
′

N
〈F 〉 = −q′H†H − q′Tr(Σ2).

If we set q′ = qµ2
1 and recalculate the Lagrangian of

the gauge fields, we will find that only coefficients m2
1,m

2
2

are modified as,

m2
1 = µ2

1(
1
2 + q − 3

32
µ4

µ4
1
) ,

m2
2 = µ2[ 14 + (q − 2)µ2

1
µ2 ].

(3.15)
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4 The realistic SU(5) model
and Higgs mechanism

In the last section, we have completed the model building
of generalized gauge theory on M4 × Z2 × Z3, with the
potential of Higgs fields derived directly from the calcu-
lation of non-commutative geometry. However, some cru-
cial points need to be further studied, such as whether the
potential provides the desired mechanism of gauge sym-
metry breaking, [i.e SU(5) −→ SU(3)× SU(2)×U(1) −→
SU(3)×U(1)] and do the results suit a description of the
physical phenomena?

4.1 Realistic SU(5) model

It is known that there are two mass scales in the SU(5)
model: of the X,Y and of W ,Z gauge bosons. There exits
a vast gauge hierarchy in the SU(5) model: MX is larger
than MW by something like 12 orders of magnitude. In
this section, we show that the model we built in the last
section may give rise to the desired symmetry breaking
and gauge hierarchy if we impose the following condition
on the parameters:

µ1 � µ ,

F = 30λ4+9λ5
60λ1+14λ2

< 1 ,

q = 4+F
2(1−F ) .

(4.1)

Now subject to (4.1) we may write down the Bosonic
part of the Lagrangian as

LG = − 1
4FµνF

µν +DµH
†DµH + Tr(DµΣ

†DµΣ)

+m2
1TrΣ2 − λ1(TrΣ2)2 − λ2TrΣ4

+m2
2H

†H − λ3(H†H)2 − λ4TrΣ2H†H

−λ5H
†Σ2,

(4.2)

where
m2

1 =
5

2(1− F )
µ2

1, m2
2 =

1
4
µ2 + Fm2

1,

λ1 = 99
2 g

2Tr(SS†) ,

λ2 = 33
4 g

2Tr(TT † + 10TrSS†) ,
λ3 = 33

4
g2

β2 Tr{[Diag(M1M
†
1 )]2 + [Diag(M†

1M1)]2

+2[Diag(M2M
†
2 )]2 + 2[Diag(M†

2M2)]2} ,
λ4 = 33

8
g2

β Tr[Diag(M†
1M1)T + Diag(M1M

†
1 )S

+4Diag(M2M
†
2 )S] ,

λ5 = 33
8

g2

β Tr[Diag(M1M
†
1 )S − 2Diag(M2M

†
2 )S

−Diag(M†
1M)T ],

(4.3)

In those expressions, matrices M1, M2, T , and S are de-
fined as

M1 =


 f11 f12 f13
f21 f22 f23
f31 f32 f33


 , M2 =


 e11 e12 e13
e12 e22 e23
e13 e23 e33


 ,

T =


 t̂1

t̂2
t̂3


 , S =


 ŝ1

ŝ2
ŝ3


 ,

where ŝi, t̂i are positive real numbers and satisfy the con-
dition 1

2Tr(T + 10S) = 1.
So far we have constructed a realistic SU(5) model.

Our next task is to see whether it gives us the desired
physical results.

4.2 Symmetry breaking

Since for parameters λ1 and λ2 in (4.3), λ2 > 0 and λ1 >
−(7/30)λ2, potential V (Σ) reaches its minimum at

Σ0 = V1




2
2

2
−3
−3


 ,

where V 2
1 = m2

1/(60λ1 + 14λ2), which was derived by Li
[13]. For the first stage, SU(5) gauge symmetry is sponta-
neous broken down to SU(3)× SU(2)×U(1) as the scalar
Σ develops VEV, 〈Σ〉 = Σ0. Because Σ is a scalar in the
adjoint representation of SU(5), mass terms for the Gα

β ,
Wr, B fields remain to be zero, while the X and Y bosons
acquire their masses

MX = MY =

√
25
2
gV1.

For the second stage, gauge symmetry SU(3)×SU(2)×
U(1) are broken to SU(3) × U(1) as scalar field H takes
its VEV as

〈H〉 =
1
2




0
0
0
0
V2


 ,

where V 2
2 = m2

d/λ3, m2
d = m2

2− (30λ4 +9λ5)V 2
1 = 1µ2/4.

Then bosons W and B obtain masses,

MW =
1
2
gV2, MB =

√
2
5
gV2.

Meanwhile, Higgs fields also obtain their masses in this
model, their values are listed in the following table.

Scalar fields [mass]2

[Σ8]αβ 20λ2V
2
1

[Σ3]αβ 80λ2V
2
1

Σ0 4m2
1

Htα
λ3V

2
2 + 5λ5V

2
1

Hdr
λ3V

2
2

(4.4)
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It is interesting to note that

m2
d

m2
W

=
33
β2 Tr{[Diag(M1M

†
1 )]2 + [Diag(M†

1M1)]2

+2[Diag(M2M
†
2 )]2 + 2[Diag(M†

2M2)]2} (4.5)

is a quantity that depends on the fermionic mass matrix.
This relation does not exist in the original SU(5) Grand
Unified Model.

Because parameters µ and µ1 were chosen to be µ �
µ1 in conditions (4.1), it is easy to find V2 � V1 in VEV,
which means that the masses of gauge bosons X and Y
may be as heavy as 12 orders of magnitude larger than
that of gauge bosons W and B. Therefore the gauge hier-
archy problem is fitting here. In fact, to realize µ � µ1,
we should take U � U1 in the fermion lagrangian (3.4).
From the point view of the non-commutative geometry
approach, U is a parameter labeling the distance between
two discrete points of Z2, and U1 is that labeling the
distance between three discrete points of Z3. These two
geometry quantities control the mass scales of symmetry
broken in our model.

5 Concluding remarks

We have constructed an SU(5) model using generalized
gauge theory on M4 × Z2 × Z3. We have shown that the
Higgs mechanism is automatically included in the gen-
eralized gauge theory by introducing the Higgs fields as
a kind of gauge fields with respect to the discrete groups
and the Yukawa couplings automatically given by the gen-
eralized gauge coupling principle. Then we arrange the
parameters appropriately and obtain the minimal SU(5)
grand unified model. In this model, the Higgs potential can
lead to the spontaneous symmetry breaking mechanism of
SU(5) −→ SU(3) × SU(2) × U(1) −→ SU(3) × U(1), and
they take place in two different gauge hierarchy scalars.
There are also two scalars H and

∑
, the vector and ad-

joint representations of SU(5) group to break down gauge
symmetry and enable the particles to be massive. In the
construction of the model, we arrangeH and

∑
in the con-

nection matrices φZ , φZr, φZr2 , φr, and φr2 . We want to
emphasize that this assignment is unique in general. Sup-
pose they are set in a “wrong” place, their transformation
properties under the SU(5) group will not be satisfied. It is
worthwhile to point out that the hierarchy scalars depend
on two geometry quantities, namely, the distance of the
two discrete points in Z2 and that of three discrete points
in Z3. One of the interesting starting points of this ap-
proach is to understand the discrete groups Z2 and Z3 as
charge conjugation transformation and generation trans-
lation in the free fermion Lagrangian, although they are
broken after the arrangements of gauge fields. This is com-
pletely different from the previous work.

There exist some differences between the parameters
of the reconstructed model and the standard SU(5) grand
unified model. In the standard SU(5) model, there are the
following free parameters:

g, the SU(5) coupling constant,
M1,M2, the mass matrices,
m2

1,m
2
2, λ1, λ2, λ3, λ4, λ5, the parameters in the potential.

In our reconstructed model, coupling constant g, mass
matrices M1,M2, and m1,m2 are also free parameters.
Instead of parameters λ1, λ2, λ3, λ4, λ5, we introduced two
matrices S and T and they satisfy the condition 1

2Tr(T +
10S) = 1. Observe that the number of parameters is equal
in these two models, but now parameters λ1, λ2, λ3, λ4, λ5
are functions of M1,M2, S, T in the reconstructed model,
so they are not as free as in the standard SU(5) model.
One result of this property is that the ratio of MHd

/MW

is a function of mass matrices, which means a complex
relation exists among the masses of particles at tree level.
Therefore, it needs to be studied further whether there
are more relations. This approach may also be used to
study more models like the left–right symmetry model,
the SO(10) grand unified model, and the supersymmetry
model.

Acknowledgements. This work is supported in part by the Chi-
nese Postdoctoral Foundation and National Science Founda-
tion. The authors would like to thank Prof. H-Y Guo, K. Wu
and Z.Y. Zhao for helpful discussions and Dr. C. Liu and Y.K.
Lau for useful comments.

References

1. A. Connes, Non-commutative Geometry, Academic Press,
New York 1994

2. M. Dubois-Violette, R. Kerner, J. Madore, J. Math. Phy.
31, (1990) 316

3. A. Connes and J. Lott, Nucl. Phys. (Proc. Suppl.) B 18,
44 (1990)

4. R. Coquereaux, G. Esposito-Farése and G Vaillant, Nucl.
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